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ABSTRACT

The disease leptospirosis is known to be endemic in Malaysia, and it significantly impacts 
human wellbeing and the national economy. Current surveillance systems are based on 
morbidity and mortality leptospirosis national data from the Ministry of Health and remain 
inadequate due to the number of unreported and misdiagnosed cases. A robust surveillance 
system is needed to monitor temporal and spatial changes which yield improvements in 
terms of identifying high-risk areas and disease behaviour. The objective of this study 
is to identify high-risk areas by estimating relative risk using existing models which are 
the Standardized Morbidity Ratio (SMR), Poisson-gamma, log-normal, Besag, York and 
Mollié (BYM) and mixture models. An alternative model is also proposed which involves 
transmission systems and stochastic elements, namely the stochastic Susceptible-Infected-
Removed (SIR) transmission model. This estimation of risk is expected to assist in the early 
detection of high-risk areas which can be applied as a strategy for preventive and control 

measures. The methodology in this paper 
applies relative risk estimates to determine 
the infection risk for all states in Malaysia 
based on monthly data from 2011 to 2018 
using WinBUGS 1.4 software. The results 
of relative risks are discussed and presented 
in tables and graphs for each model to 
disclose high-risk areas across the country. 
Based on the risk estimates, different models 
used have different risk interpretations and 
drawbacks which make each model different 
in its use depending on the objectives of the 
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study. As a result, the deviance information criteria (DIC) values obtained do not differ 
greatly from each expected risk which was estimated.

Keywords: BYM, DIC, leptospirosis, log-normal, mixture model, poisson-gamma, relative risk, SIR 

transmission model, SMR

INTRODUCTION

Leptospirosis is a primarily zoonotic disease originating from the pathogenic leptospires 
species and living widely throughout nature. Small mammals like rodents are the reservoir 
hosts in which pathogenic leptospires are carried and maintained, reproducing itself in 
their hosts’ kidneys. Excretion of leptospires through the urine of those infected animals 
causes acquisition in new hosts, whether other animals or humans (Haake & Lavett, 2014). 
Transmission may occur via two major routes: direct contact with urine or other bodily 
fluids of infected animals through the skin and intact mucus membranes such as the eyes, 
nose or mouth; and indirect contact with broken skin or through being scratched with soil, 
food or water contaminated with the urine of infected animals (Wahab, 2015). Leptospirosis 
is widespread and can be a serious public health issue especially in temperate or tropical 
climates (Haake & Levett, 2014). Malaysia is known to be a location in which leptospirosis 
is endemic among the south-east Asia region and significantly impacts human wellbeing 
and the national economy (Garba et al., 2017a). This is because the humid weather and 
climate conditions in Malaysia are conducive for the growth of the leptospires bacteria. 
The abundance of leptospires has therefore caused death and suffering in Malaysia since 
it was first diagnosed by Fletcher (1928). Based on Figure 1, the frequency of incidence 
and the mortality rate due to leptospirosis increased between 2004 and 2015.  

Despite the dramatic increase in the number of cases and deaths, leptospirosis is a 
seriously neglected tropical disease. Factors like misdiagnosis of clinical symptoms which 
resemble other similar diseases (such as dengue and hepatitis) and the limited or lack of 
rapid diagnosing facilities causes the disease to continually be under-reported. This is 
also may create barriers to government efforts to determine the true incidence rate for the 
human population. The elimination of leptospirosis is therefore crucial to minimise the 
risk of infection. This prevention action can be performed through appropriate controls, 
including a robust and recognised vaccination programme, promotion of the use of hygiene 
and personal protective equipment as well as awareness of high incidence areas by the 
authorities and society. This is crucial for the risk estimates in geographical areas and 
revealing the hotspot areas of leptospirosis infection. 

In Malaysia, the surveillance systems currently and typically rely on available 
leptospirosis national databases, which are the morbidity and mortality reports from 
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Ministry of Health Hospitals. However, the existing surveillance system is still inadequate 
to combat this disease due to the number of unreported and underestimated cases (Benacer 
et al., 2016). A robust surveillance system which can monitor temporal and spatial changes 
is needed to yield improvements in identifying at-risk areas and disease behaviour. This 
at the same time can assist the early detection of high-risk areas which can be applied as 
a strategy for preventive measures in Malaysia and other countries. 

Estimation of relative risk is very common in the study of epidemiology and is defined 
as the estimation of the probability of infection after exposure to the risk variable compared 
with the likelihood of disease occurrence in a sample study group or population (Andrade, 
2015). Relative risk (also known as risk ratio) calculation is usually expressed as a ratio to a 
denominator instead of a percentage. Relative risk in this study is defined as the probability 
that a person within a specific region would contract the disease against the likelihood that 
a person in the general population would contract the disease. To determine the disease 
risk status of an area, the first action is to assess the local supposed ‘expected’ incidence 
of the disease, followed by a comparison with local observations of the incidence value of 
the disease. Several common methods are used in the epidemiology field to estimate the 
ratio of risk by using data for counts within tracts. These are the SMR model, the Poisson-
gamma model, the Log-normal model, the Besag, York and Mollié (BYM) model and the 
mixture model. These approaches are known as classic methods of estimating disease risk 
which are commonly used in disease mapping. However, this paper will not discuss in detail 

Figure 1. Incidence and mortality rate of leptospirosis in Malaysia, 2004 to 2015 (Wahab, 2015)
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the representatives of the disease risk map. The focus is on the estimation of relative risk 
approaches to determine the risk of leptospirosis disease across the Malaysian region. The 
methodology is discussed from a basic Poisson likelihood to more complex risk structure 
models which include spatial correlation and spatiotemporal. 

The goal of epidemiology research is to gain an insight into the nature or history of 
transmission model development (Brauer, 2017). Biologically, leptospirosis disease involves 
direct and indirect processes of transmission from infectious to susceptible individuals. 
Therefore, a model that can incorporate this transmission system and an alternative method 
for estimating the relative risk of the leptospirosis SIR transmission model are required 
in this paper for the human population using monthly data from Malaysia. The results 
of relative risk estimated from both the existing and proposed transmission models are 
discussed and the performance is evaluated using deviance information criteria (DIC) to 
assess model complexity and best fitting model to the data.

METHODOLOGY

Data and Study Location

The relative risk estimation in this paper used secondary data for observed cases of 
leptospirosis infection in the form of count cases for all 13 states and 3 federal territories 
in Malaysia. These states and federal territories are Perlis, Kedah, Penang, Perak, Selangor, 
Federal Territory of Kuala Lumpur, Federal Territory of Putrajaya, Negeri Sembilan, 
Malacca, Johor, Pahang, Terengganu, Kelantan, Sarawak, Sabah, and Federal Territory of 
Labuan. In Malaysia, leptospirosis was gazetted as a notifiable disease in December 2010 
(Garba et al., 2017a; Sulong et al., 2011). Thus, this study was designed to accommodate 
the monthly observed cases starting from January 2011 up to December 2018 so cumulative 
data could be taken at annual intervals (starting in January and ending in December) for 
all states and federal territories in Malaysia. 

This secondary data was obtained from the Ministry of Health with ethic approval 
from the National Medical Research Registration (NMRR): NMRR-18-3006-43002 
(IIR). Analyses are based on space and time dimensions since data from the public health 
authorities (MOH) is often available for time windows for several years. Here, the observed 
counts for the new infected human cases are based on the time (j – 1, j) for j = 1, 2, …, 96 
months per calendar month and study region i for all 13 states and three federal territories 
in Malaysia. A one-month observation time was chosen based on the development of the 
leptospira bacteria in the human body once a person is infected (Triampo et al., 2008). In 
this study, the observed number for humans infected with leptospirosis was categorised as 
the dependent variable and time (monthly) was the independent variable.
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Analyses Framework 

This paper involves several analytical steps such as data collection, calculation, estimation, 
presentation of results as well as comparison. This progress flow is explained in more detail 
in the form of a flow chart in Figure 2.

Figure 2. Flow of the process

Relative Risk Estimator for Leptospirosis using Existing Models

In statistical analysis, inferences are made by selecting a value or pattern for a certain 
phenomenon from empirical data, a procedure known as an estimator (Long, 2012). An 
estimator aims to measure or derive such risk estimates on a statistical spatial method. A 
basic summary measurement for an estimator often computes a local relative risk which 
is taken to measure excess risk within a population (Lawson, 2006). This risk estimate 
has been commonly used in spatial epidemiology and is calculated by comparing the 
observed incidence to that expected from the background population. This assessment of 
risk status of the ratio of observed to expected counts is called standardised mortality or 
morbidity ratio (SMR), a ratio which is an estimate of relative risk within each area or 
region. Usually, cofounding, or unobserved variables can be found within observed data 
in spatial units affecting individuals or associated tracts or covariates, these are known as 
random effects. Due to its simple estimates, this type of primary descriptive method often 
ignores such variables. Thus, more substantial models are used to include these effects in 
the analysis, which is discussed further in this study.
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Standardized Morbidity Ratio (SMR). In broad epidemiological terms, SMR can be 
defined as either Standardised Mortality Ratio or Standardised Morbidity Ratio. The term 
mortality refers to death and the mortality rate is the number of deaths divided by the size 
of the composite population. Meanwhile, morbidity means disease or illness. It can range 
from mild illnesses such as common flu to chronic diseases such as cancer or traumatic 
brain injury. In addition, a study of nonfatal disease is sometimes known as the Standardised 
Morbidity Ratio (Richardson et al., 2004) where the status burden of a disease in an area 
respective to the disease is the ratio of observed to expected counts. 

Suppose that the study area to be mapped is divided into M mutually exclusive states 
(i = 1, 2, …, M) and T time (j = 1, 2, …, T). Each state has its own observed number of 
cases 0i and expected number of cases Ei, as shown in Equation 1 and 2.

Ei = Population of state i in time j ×   [1] 

Ei =                                              [2]

Where Ni is the population of state i and the summations are for i = 1, 2, …, M. Here the 
standardisation is performed based on the total population at risk, assuming everybody 
is equally at risk. Using 0i and Ei as obtained from the available data, the derivation of 
relative risk value, which is denoted as , can be calculated using Equation 3. The relative 
risk, for state i  at time j is defined as the probability that a person within the state i 
contracts the disease divided by the probability that a person in the population contracts 
the disease (Samat & Percy, 2012).

Relative risk 

                                                            
  

                                                                                                                             [3]

However, this method has several drawbacks that make interpretation of the SMR 
difficult. According to Kismiantini (2009), the variance is large in a region that has small 
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expected values, especially an area with a small population size or region with rare diseases 
cases. This extra variation in a small region with a small population size can cause artefacts 
or errors in the estimated risk (Lawson & Williams, 2003). The SMR is measured by 
observed over expected incident numbers in the form of a ratio. If the ratio is more than 
1 it may suggest excess in risk, but the SMR will become more than 1 or even large if the 
expected number of incident cases is too small. For instance, the observed count number 
for Labuan in April 2016 was 11 with the expected number counted as 1, giving an SMR 
of 11. Otherwise, if the expected value is too large or there is no observed value of cases 
in a region, then the SMR is very small or equal to zero (Awang & Samat, 2017). In this 
case, the zero value of relative risk indicates that there is no risk for the people in the study 
region infected by the disease even though everybody has the possibility of catching the 
disease. In addition, if the expected number is zero in a count tract, then the estimation ratio 
of the SMR is infinite. All these types of artefacts for the SMR often occur in a region with 
a small population size and area and with a small count of cases (such as Labuan, Perlis, 
and Putrajaya). Thus, the SMR is a reliable measure of relative risk for large geographical 
regions such as countries but may be unreliable for small areas such as counties (Meza, 
2003). To overcome these drawbacks, many researchers have sought alternative solutions 
by introducing better alternative methods for relative risk estimation (Kismiantini, 2009). 
These include the use of Bayesian methods such as the Poisson-gamma model.

Poisson-Gamma Model. The Poisson-gamma model is one of the earliest examples of a 
Bayesian approach used to estimate disease relative risk especially when the data is typically 
small (Richardson et al., 2004). By using Bayes’ rule, a combination of observed data and 
some prior knowledge would produce the posterior distribution. In Bayes’ method, relative 
risk estimation is based on the posterior distribution which is defined as the product of 
likelihood function and prior distribution in Equation 4.  

Posterior ∝ Likelihood × Prior                                                                                [4]

For i = 1, 2, …, M study states and j = 1, 2, …, T time, is the observed count of 
cases in state i and at time j. Likelihood is defined as the probability distribution for data 
that conditionally acts upon unknown parameter, . This probability distribution for 
likelihood is often assumed to follow a Poisson distribution within a given period, with 
mean and variance as follows:

                                                                  [5]

Based on Equation 5, is the expected number of cases and the parameter of interest,  
is assumed to be a parameter of relative risk for state i and treated as a random variable. 

The random variable distribution of parameter  has a gamma prior distribution with 
parameters α and β as written in Equation 6. 
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                                                                                                      [6]

This gamma prior provides for a measure of extra variation affected by random effects 
within the estimation of risk (Lawson, 2006). Hence, the final output of the Bayes estimate 
includes the posterior expected of relative risk for all states and time periods. Previous 
studies by Awang and Samat (2017) and Ideris and Samat (2015) suggested that Poisson-
gamma gave a better estimation compared to the SMR when dealing with zero or clustered 
counts data. This is due to the modelling of random effects applied within the Bayesian 
framework in the Poisson-gamma model.

Log-Normal Model. Although Poisson-gamma is convenient, it may be too complicated 
to allow spatial correlation between risk in nearby areas, while the covariate adjustment is 
also difficult when heterogeneity is involved (Lawson & Williams, 2003; Nurmalasari & 
Pramana, 2014). Spatial random effects may arise when the regions are believed to have 
site-dependent covariates.  Thus, the log-normal model is introduced which allows spatial 
correlation between risk in nearby areas. A log-normal model can be written as Equation 7:

                                                                                                 [7]

For a log-normal model, are assumed to be Poisson distributed with parameter 
. The observed number of cases is described in logarithmic terms, with α as a 

semiparametric model of improper prior distribution for an intercept mean of relative risk 
in the study region (Lawson, 2006), while  represents the correlation parameter between 
the risk of neighbouring areas. This correlation is assumed to be normally distributed with 
mean 0 and variance .

Besag, York and Mollié (BYM) Model. In the BYM model, random effects are specified 
into the above components for the model of relative risk estimation that considers effects 
that vary within a cluster or correlated heterogeneity, as well as effects that vary in 
uncorrelated heterogeneity. The relative risk for the BYM model is formulated as Equation 
8 where is the correlated heterogeneity while is the uncorrelated heterogeneity. 
Meanwhile α is assigned as an improper uniform prior for the conditional autoregressive 
model (CAR) distribution to ensure that the model is identifiable.

                                                                                                                                                                           
        [8]                                                                 
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In the form of extra variation, there is a spatial autocorrelation between spatial units 
due to the unobserved environmental effect, and a naturally clustered scale observed for 
the disease for its distribution as discussed before, where estimation of risk in any area 
depends on neighbouring regions. Therefore, the conditional autoregressive (CAR) model is 
used to unveil and describe the quantities for spatial relations between the data and spatial 
variation in the form of sub-regions aggregation as well as to detect the cluster areas. The 
CAR model is defined as Equation 9:

                                                                                     [9]
 

where, 

        [10]
 

 
if i, k are adjacent (or 0 otherwise)

By referring to Equation 10, represents the weightage for neighbouring areas. 
Summation of weightage is equal to 1 if i, k is adjacent and 0 when i, k are not adjacent. 
Meanwhile, variables v and u are controlled by parameters and representing the 
inverse-variance of random effects. These hyperprior distributions are assumed to follow 
gamma distributions.

Mixture Model. To estimate true relative risk, an appropriate model should be able to 
detect and maintain discontinuities and variations between neighbouring areas. This means 
that an area should not be too dependent on its nearby areas, which causes the estimated 
risk to become almost identical to the neighbouring areas. To overcome this problem of the 
BYM model, the mixture model was proposed by contributing discrete jumps components 
to maintain the variation risk for each tract. The relative risk model is composed of three 
components: v as unstructured heterogeneity and two mixing components; and 
denoted as a combination of a component for spatial correlation and a component that 
models the discrete jumps between neighbouring areas.

                                [11]

Equation 11 depends on the value of as a cluster assignment which subdivides the 
data points into clusters (Long, 2012). When  = 1 the standard BYM model arises for the 
smoothing, and when = 0, a pure jump model arises which is distributed as Equation 12.
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                                                                                          [12]

When the discrete jump model is considered (for = 0), the spatial correlation follows 
a chosen prior which examines the total difference of two independent random variables 
between neighbours. The results of Lawson and Williams (2003) show that estimated risk 
through the mixture model performs better than the BYM by maintaining the areas with 
jumps, and at the same time displaying smoothing in the other areas. 

Based on the discussion of all the risk estimation methods above, the output risk varies 
according to the approaches used. Each method has different interpretations and elements 
used in estimating the spatial random variables. A more effective model is often assumed 
to produce true risk estimation which takes random effects into account (Lawson, 2006). 
In the next subtopic, a goodness-of-fit method for the model comparison for the Bayesian 
model, which is a package from WinBUGS software, is discussed.

Deviance Information Criterion (DIC). Model comparisons for complexity and fit of the 
data to the model in Bayesian measurements can be conducted using deviance information 
criterion (DIC) monitored in WinBUGS, given as Equation 13.

DIC= Dbar + pD                                                   [13]

Based on Equation 13 of DIC above, Dbar is used to calculate the goodness of fit for 
the model while component pD calculates the complexity of the model by estimating the 
effective number of parameters used in the model (Spiegelhalter et al., 2003). A model with a 
small DIC number is estimated to be the best model to fit with the data. In statistical models 
of analysis, there is no perfect or good model, and no mathematical model can accurately 
estimate detailed and real situations. DIC is used to compare the models which best fit 
the data. However, some studies disputed the capacity of DIC to compare hierarchical or 
multi-level models when re-parameterisation occurs (Pooley & Marion, 2018; Dey et al., 
2019). On the other hand, it is very elusive to find a study which compares DICs between 
different forms of mathematical models. This is because models with different operator 
scopes have different mathematical functions and operations. Therefore, comparing different 
types of mathematical models with different mathematical functions can cause misleading 
interpretation of DICs.

Expected Relative Risk for Leptospirosis using Discrete Space-Time Stochastic SIR 
Model for Human Transmission

The focus of this paper is the application of mathematical and statistical approaches that 
quantify transmission models and data uncertainty for the estimation of relative risk. 
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Descriptions of mathematical transmission models are often based on the understanding of a 
disease spread between susceptible and infectious individuals (Brauer, 2017). This study led 
to the development of a compartmental model which has long been introduced and applied 
by mathematicians and physicians. The basic development of a compartmental model is 
based on the ideas behind the SIR model proposed by Kermack and McKendrick (1927). 
The simple compartmental model assumes that the mixing population in the compartments 
is homogeneous. However, a small number of individuals are infected at the beginning of 
the disease outbreak and the transmission is a probabilistic event based on the pattern of 
contact between susceptible and infective individuals. 

Therefore, in this paper a basic compartmental stochastic SIR model is proposed 
specifically for humans infected by leptospirosis disease. This model involves a 
transmission system (known as a compartmental model) and a stochastic process which 
involves the probabilistic process of infection adapted from an early study by Reed-Frost 
in the 1920s. The population was divided into compartments with a time rate of transfer 
from one compartment to another. The terminology SIR is used to describe individuals 
from susceptible state S to infected state I and eventually to recovered state R. Susceptible 
is classified for individuals who will be the subject of the disease but are not yet infected. 
Individuals classified as infected are the ones who had been infected with the disease 
from contact with infected rats’ urine. Once the infected individuals recuperated from the 
disease, they moved to the recovered state.

Figure 3. A compartmental SIR model for human leptospirosis transmission 

Let ‘S’ be the susceptible, ‘I’ is the infected and ‘R’ is recovered for i=1, 2,…, M study 
regions (for all states and federal territories in Malaysia) and j=1, 2,…, T time periods 
(which is monthly data from January to December per calendar month). From Figure 3, 
the compartment represents the total number of susceptible persons for leptospirosis 
for state i at jth month, refers to the total number of persons infected with leptospirosis 
at state i for month j, and is the total number of recovered persons from leptospirosis 
disease for state i at month j. 

The arrow from susceptible to infected represents the new infections occurring at rate 
γ. While δ denotes the recovery rate for an infected person. Furthermore, μ represents 
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the rate for persons who leave the group because of natural death such as from an illness 
unrelated to leptospirosis, like diabetic complications, myocardial infarct, malignancy, 
and motor-vehicle accidents among the human population. For human population, 
is assumed to have closed population comprises of susceptible, infected, and recovered 
individuals written as Equation 14.

                                                                                                      [14]

The total susceptible human population comprises the existing susceptible population 
which increases with the rate of birth, μ, of which every person born is assumed to be 
susceptible to leptospirosis. At the same time, the susceptible population decreases 
following effective contact with the infectious individuals at rate . The susceptible 
human population is further decreased by natural death at rate μ. In this model, birth and 
death rates are assumed to be equal for simplicity and the rate of death μ is constant for 
all population subgroups of susceptible, infected, and recovered individuals. Thus, the 
deterministic difference model for susceptible humans can be written as Equation 15.

                         [15]

Next, the population of infected humans is generated from the existing previously 
infected individuals and increase by newly infective individuals by new infections of 
susceptible humans’ rate γ. The population of infectious humans is decreased by natural 
death at rate μ, as well as by recovery from infection at rate δ. The infectives human formula 
can be written as Equation 16. 

     [16]

The population of individuals in the recovered compartment is formulated by the 
existing number of previously recovered persons and increased by the number of newly 
recovered persons from the infected class at rate δ while it is decreased by natural death 
μ which is constant for all compartments as written in Equation 17. 

                  [17]

The system of transmission behaviour for human leptospirosis disease (Figure 3) can 
be written as a linear system of difference deterministic Equation 18.

               [18]
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Based on this proposed compartmental model, the deterministic Equation 16 was 
derived to develop the corresponding discrete-time discrete-space stochastic SIR model 
specifically for leptospirosis disease transmission for human population. Initially there 
must be an infected human in the population; . Meanwhile the initial number of 
susceptible humans is . Both and denote the number of infected and 
susceptible humans for state i at time j, respectively. The probability of contact between 
a susceptible human with infectious individuals is b. The infection probability for a 
susceptible human to become infected is β. The transmission coefficient of infectious 
individuals to the human population is denoted as . Thus, the transmission rate or 
probability of susceptible individuals being infected is summarised as Equation 19. 

                                                                                                                 [19]

This stochastic component has been adapted from the original model designed by Reed-
Frost in the 1920s for leptospirosis infection. It is reasonable to represent uncertainty or 
randomness in the leptospirosis infection model. This stochastic model includes a new term 

 representing the number of newly infected leptospirosis cases in the human population. 
The time interval is Poisson stationary and the independent increment properties (j–1 and 
j) in the study region are represented by i. A stochastic process is a Poisson distribution 
process with random likelihood that may be analysed statistically but may not be predicted 
precisely. In this analysis, a random Poisson distribution will be used to generate the 
probabilities of outcomes of a system called the Monte Carlo simulation which includes a 
probability distribution to reflect the inherent randomness within the data. 

For human leptospirosis,  = the total number of newly infected human leptospirosis 
cases,

           
                         

  
               [20]
              

             

Based on Equation 20,  represents the constant term to describe the overall rates of 
the process. The intrinsic conditional autoregressive (CAR) priors are applied to fit the 
model for random effects presented among the observed data and random effects for 
the unobserved variables in nearby areas. The discrete time discrete space stochastic SIR 
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model for human leptospirosis proposed in this study thereby used the estimation of relative 
risk, the results of which are discussed in the next section.

In this study, the intrinsic conditional autoregressive (CAR) priors are applied to fit 
the model for random effect . The CAR-Normal distribution is used as the prior to allow 
for spatial dependence between the random effects in nearby areas. These CAR priors 
were proposed by Besag et al. (1991), where the probability densities of values at any 
given location are conditional on the neighbouring areas. The CAR priors model used is 
as Equation 21. 

[ ] ( )22 ,~,,| iicji cNjicc σσ≠                                             [21]

where the mean

∑∑
=

j
jii

j
ji

i cc ,
,

1 κ
κ

                                            [22]

and variance

∑
=

j
ji

c
i

,

2
2

κ
σ

σ                                                       [23]

In this context, the is Equation 22 and 23 are equal to 1 if i,j are adjacent and 0 if 
they are not adjacent. For a full Bayesian analysis, prior distributions must be specified for 
this hyperparameter. Here, this analysis considers gamma distribution for parameter that 
controls the variability of c. The discrete time discrete space stochastic SIR model proposed 
in this study is used as an estimate of relative risk specifically for leptospirosis disease.  

Generally, for i = 1, 2,…,M study region and j= 1, 2,…T time periods, the observation 
sample used is the pseudo-random sample where for k = 1, 2,…, n is generated from 
a posterior distribution for the mean number of leptospirosis infections, in Equation 
19. From this sample of the posterior mean number, the posterior expected mean is 
approximated using the Equation 24.  

                                                                                                [24]

Meanwhile, the respective relative risk parameter is is defined as Equation 25.

                                    [25]

Based on Equation 25, the pseudo-random sample generated for relative risk parameter 
is approximated as Equation 26: 

                                                             [26]



RR Estimation for Leptospirosis based on Existing and SIR Model

1085Pertanika J. Sci. & Technol. 29 (2): 1071 - 1095 (2021)

Therefore, the posterior expected relative risk for leptospirosis, can be written as 
the posterior expected mean number of infections, over the expected number of new 
infections, based on the human population of the study regions. 

In this study, the value of relative risk is defined based on research by Samat and 
Percy (2012). A value of relative risk that is equal to zero means people within the study 
region have no relative risk or infection risk for the disease compared to the people in the 
population. However, the value of relative risk not ought to be zero since everybody in fact 
has the possibility or chance of contracting the disease. This is one major drawback of the 
SMR method that this present study aims to overcome. Next, when the value of relative 
risk is close to 1 this means that there is no significant difference between the conditional 
probability that a person in the study region contracts the disease and the conditional 
probability that a person in the general population contracts the disease.

On the other hand, if the value of relative risk is greater than 1, it indicates that the 
people within the study region are more likely to contract the disease compared to the people 
in the population. Conversely, a value of relative risk below 1 indicates a decrease in the 
likelihood of contracting the disease which means that the people in the study region are 
less likely to contract the disease compared to people in the population. All the traditional 
and proposed methods discussed in this study will be applied using WinBUGS software 
to process leptospirosis data from Malaysia. The results are presented in graphs and tables 
in the next section.

APPLICATION OF RELATIVE RISK ESTIMATION FOR 
LEPTOSPIROSIS DISEASE IN MALAYSIA 

Application of Relative Risk Estimates based on Existing Models

This section discusses the results of the analyses using the SMR, Poisson-Gamma, Log-
normal, BYM and mixture models and utilising leptospirosis data for all states in Malaysia 
from January 2011 to December 2018. Figure 4 depicts the time series plots of human 
leptospirosis cases reported for epidemiology months from January 2011 to December 
2018 in four selected states with the highest cases throughout the period. It can be clearly 
seen that the state of Selangor had the highest number of leptospirosis cases in the early 
years. However, the trend changed in early 2015 as Kelantan recorded more cases than 
Selangor, after which point the numbers generally decreased in both states from 2016 to 
2018. The average number of cases was between zero and 80 from 2011 until the end of 
2014 and then rose sharply to 150 at the beginning of 2015, with Kelantan showing the 
highest number, 278 total cases, followed by Selangor with 143 cases in March 2015. 
Based on the frequency of reporting, it can be concluded that Selangor and Kelantan 
had the highest number of human leptospirosis cases. However, from a particular point 
of view, the higher number of cases reported in Figure 4 is most likely due to the greater 
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population density and the large size of the two states, which make the data inappropriate 
for representing true risk.

Figure 4. Numbers of human leptospirosis cases in Malaysia from 2011 to 2018

The results of relative risk for the selected highest-risk states using the SMR method 
from 2011 to 2018 are displayed in Figure 5. Most states have risk between zero to 2.5 
except for Melaka (from the end of 2011 to early 2013), Kelantan (from 2014 to 2016) and 
Terengganu (from 2016 to 2018). This leads to a general conclusion that people in the state 
of Melaka, Kelantan, Terengganu, and Labuan are more likely to contract leptospirosis 
compared to the entire population. The risk of Labuan fluctuates over the years due to the 
high number of observed cases to expected value. Figure 4 shows Selangor frequently has 
a high number of human leptospirosis cases. However, by using the SMR model, Melaka 
has shown the highest risk, observed between early 2012 and early 2013 compared to the 
other states. This is followed by Kelantan and Terengganu in which states the risk began 
to increase in 2015 until 2018. Thus, the higher number of cases shown in Figure 4 does 
not reflect the risk of disease infection.

The time series pattern for posterior relative risk plotted for the Poisson-gamma model 
in Figure 6 is reasonably like the SMR in Figure 5. However, the SMR has a slightly higher 
range value of risk compared to Poisson-gamma risk. The range risk, which is the largest 
value minus the lowest value of the risk, in Figure 5 for the SMR is 9 (9 – 0). Meanwhile 
the range value of risk estimated from Poisson-gamma is 6.629 (6.664 – 0.035). The range 
is used to compare the spread of risk estimated from different models using a similar dataset. 
A large range of risk is assumed to have larger variability with more dispersion in the data 
and vice versa. However, a large range of a dataset may result from outliers. These outliers 
are unusual values of risk output probably caused by data entry errors, measurement errors 
or sampling problems. Outliers may also occur because of natural variation especially 
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when big data is involved. Outliers are useful for providing information about the highest 
and lowest variability risks inherent in the study areas. In this case, the estimated risk does 
not necessarily need to be precise towards a mean point. Risk is a variable that occurs 
naturally and removing outliers sometimes causes the subject areas to appear less variable 
than they are in reality. 

It can be concluded that the use of the SMR offers a slightly higher variability than 
Poisson-gamma. Besides, the SMR has a drawback when dealing with zero cases. The 
risk estimated from a zero-case area will have zero risk estimated, as shown in Figure 5, 
which means that the area has no possibility for anyone there to catch the disease. But 
everyone has the possibility of being infected with the disease either low or high. Hence, 
Poisson-gamma in Figure 6 is used to overcome this shortcoming by estimating risk based 
on gamma posterior distribution that gives weightage for small areas with rare diseases 
(Lawson & Williams, 2003). The estimated risk shown in the time series graph is more 
realistic as there are no states with zero potential to contract the disease. 

Figure 5. Estimates of relative risk for selected highest risk states based on the SMR of human leptospirosis, 
2011 to 2018

Figure 6. Estimates of relative risk for selected highest risk states based on the Poisson-gamma model of 
human leptospirosis, 2011 to 2018
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The time series pattern of posterior relative risk for the log-normal model in Figure 7 
is quite like the Poisson-gamma model in Figure 6, with a slightly higher range value of 
risk. Melaka was still recorded as high risk from the end of 2011 to early 2013, while the 
risk for Kelantan and Terengganu rose gradually and consistently starting from 2014 up to 
2018. This slight change of risk values was due to the spatial correlation in which the risk 
of an area will be affected by the risk from neighbouring areas such as between Kelantan 
and Terengganu. Furthermore, changes in range of risk may exist once the spatial random 
effects for correlated heterogeneity in the population are considered. 

Figure 7. Estimates of relative risk for selected highest risk states based on the Log-normal model of human 
leptospirosis 2011 to 2018

Based on Figure 8, the time series plots for the BYM model are too smooth and the risk 
shows less variation than the observed risks for the SMR, Poisson-gamma and log-normal 
models. Some of the extreme values estimated from the SMR have disappeared. This is 
because the components in the model consider correlated and uncorrelated heterogeneity 
of area-specific random effects. The variability of risk estimated depends on uncorrelated 
heterogeneity. However, in this case variable u controlled by parameter  is small which 
causes lower variability of risk. Thus, the risk of a particular area is slightly like that of 
neighbouring areas. Melaka had the highest risk, which gradually decreased from 2011 
to 2014, while the risk of Kelantan increased from 2012 to 2016. As the risk in Kelantan 
decreased, the risk in Terengganu increased from the end of 2016 until 2018. 

As discussed before, extreme risk values estimated by the SMR often causes outliers. 
Without considering the natural variation, these outliers are believed to disfigure statistical 
analysis and perhaps contravene the assumptions. Subsequently, they produce unclear 
spatial patterns of risk if any mapping analysis is involved (Lawson & Williams, 2003). 
Therefore, many researchers have sought appropriate models (known as the smoothing 
approach) to overcome this problem by estimating the random effects. As a result, and using 
the same dataset, models such as Poisson-gamma, log-normal and BYM can overcome 
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the outliers and zero case problems of the SMR. Nevertheless, the BYM model shown in 
Figure 8 is smoothing over large discontinuities for risk estimated, which may be crucial 
to maintain. This means that some risk surfaces undergo over-smoothing and the risks 
produced might not depict the true risk. According to Lawson (2006), the BYM model is 
a smoothing model which is not designed specifically for cluster detection. Therefore, a 
mixture model was used to overcome this problem and simultaneously allow for smoothness 
and discontinuities.

Figure 8. Estimates of Relative Risk for selected highest risk states based on the BYM model of Human 
Leptospirosis, 2011 to 2018

According to Figure 9, the state of Melaka recorded the highest risk from 2011 to early 
2013 and was followed by Kelantan from 2014 to 2016 and Terengganu from 2015 to 2018. 
The pattern is still like the other observed method in which most states have a risk less 
than 2 with a small range of risk. For this method, the discontinuity of risks estimation is 
maintained, and the smoothness is employed at the same time. 

Figure 9. Estimates of relative risk for selected highest risk states based on the mixture model of human 
leptospirosis, 2011 to 2018
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Application of Relative Risk based on Discrete Space-Time Stochastic SIR 
Transmission Model

The SIR transmission model proposed in this paper utilises the stochastic element in 
relative risk estimation for leptospirosis in Malaysia. The result of expected relative risk 
for posterior mean is plotted in the time-series graph in Figure 10.

Figure 10. Expected relative risk for selected highest risk states based on the stochastic SIR model of human 
leptospirosis, 2011 to 2018

The average expected relative risk for most states based on the stochastic SIR 
transmission model for human leptospirosis is less than 2. It can be assumed that states 
with an average risk of under 2 are less likely to contract the disease compared to people 
in the overall population of Malaysia. According to the time-series graph plotted in Figure 
10, Melaka, Kelantan, Labuan, and Terengganu have a higher risk compared to the other 
states. This indicates that these areas are more likely to contract leptospirosis compared 
to the total population of Malaysia. Besides that, in early 2011 and 2012, Terengganu and 
Kelantan had relatively high risk which gradually decreased over time. After that, starting 
in 2015 the risk increased again until 2018. An early sign, like this one from 2011 to 2012, 
should alert the authorities and communities to any potential increase in the risk of the 
disease occurring again in these areas. 

Based on the expected relative risk between the existing and stochastic SIR models in 
this paper, it can be concluded that utilising different models produces different patterns 
of time-series for disease risk plotted. In line with the objective of this study, the proposed 
model is designed to yield information about areas of excess risk by using the transmission 
and stochastic approach naturally along with the uncertainty of leptospirosis infection 
behaviour.
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Expected Relative Risk Results of Leptospirosis based on Existing Models and 
Discrete Space-Time Stochastic SIR Model for Human Leptospirosis Disease

Table 1 shows the comparison of estimated expected relative risk results for the 
epidemiology month of May 2014, based on the SMR, Poisson-gamma, log-normal, BYM, 
mixture models and the discrete time-space stochastic SIR model for human leptospirosis. 
This epidemiology month was chosen to clearly demonstrate the result of posterior 
expected mean of relative risk for the existing and stochastic SIR models of leptospirosis 
transmissions. 

Table 1 
Estimates relative risk for the epidemiology month of May 2014

No. States Number 
of Cases SMR Poisson-

Gamma
Log-

normal BYM Mixture SIR

1 Perlis 0 0 0.3613 0.4097 0.4513 0.3352 0.3736
2 Kedah 1 0 0.0866 0.1303 1.1550 0.5979 0.6504

3
Pulau 

Pinang 10 0 0.3817 0.3831 0.2892 0.3589 0.1786

4 Perak 59 2 1.7080 1.7040 0.9622 1.4970 1.9580
1.63805 Selangor 155 2 1.8320 1.8330 1.0580 1.5600

6
Kuala 

Lumpur 17 1 0.7317 0.7148 0.9621 0.6821 1.2600

7 Putrajaya 0 0 0.6574 0.6385 0.6288 0.2548 0.0021

8
Negeri 

Sembilan 5 0 0.4025 0.4041 1.2220 0.7628 1.7090

9 Melaka 1 0 0.1954 0.2420 1.6290 0.4119 0.2621
10 Johor 20 0 0.4199 0.4201 0.2945 0.3993 0.3088
11 Pahang 10 0 0.4951 0.4882 0.8887 0.6389 0.9885
12 Terengganu 20 1 1.2360 1.2110 1.7550 1.2380 1.8860
13 Kelantan 74 3 2.9650 3.0060 2.2990 3.1500 2.3080
14 Sarawak 17 0 0.4831 0.4800 1.0970 0.6566 0.6304
15 Sabah 39 1 0.7736 0.7683 0.6225 0.8922 1.0860
16 Labuan 0 0 0.6573 0.6498 1.4050 1.3820 0.3078

DIC - - 55.264 55.745 56.325 54.197 62.524
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Table 1 indicates that Selangor had the highest number of leptospirosis cases in May 
2014, 155, followed by Kelantan with 74 leptospirosis cases and Perak with 59 cases. 
However, expected relative risks estimated by all the existing and proposed models show 
that the state with the highest risk of catching the disease was Kelantan instead of Selangor. 
Intrinsically, the higher number of cases in the state of Selangor is because of the large 
population size and area, and not because of the high-risk occurrence. Meanwhile, the high 
risk for Kelantan is due to the flood season that affects the north-eastern states of Malaysia 
(Garba et al., 2017b). 

From Table 1, the expected relative risk for the mixture model shows the state with 
the highest risk is Kelantan with relative risk value 3.15 followed by Selangor, 1.56 
and Perak, 1.497. Since Kelantan is the highest risk, the nearest area; Terengganu is 
expected to have relatively high risk. However, in this case, Terengganu shows low risks 
of infection which is 1.238. Similarly, with the BYM model, Kelantan is at the highest 
risk of leptospirosis infection followed by Terengganu and Melaka. In this case, Kelantan 
neighbours Terengganu, while Melaka is located further away and does not have spatial 
correlation between those high-risk states. This indicates that these models do not appear 
to be robust in terms of the covariate element proposed when neighbouring areas have poor 
relatively influenced by the highest risk adjacent areas. The posterior expected relative 
risk for the stochastic SIR, on the other hand, shows Kelantan as at higher risk followed 
by Perak and Terengganu. Geographically, these three states abut against each other and 
have relatively correlated heterogeneity. 

The smallest DIC value in Table 1 is the mixture model with a difference of 
approximately 1 to 2 with other models. However, it is difficult to conclude that the mixture 
model is the model most fitted to the data since the DIC value is not greatly dissimilar 
to the other existing Bayesian models. Next, the DIC value for the stochastic SIR model 
is 62.524 which is not too far from the others. However, as discussed before, comparing 
different mathematical models may not be appropriate and the interpretation of DIC values 
may be misleading. The DIC value comparison for the stochastic SIR model is more 
suitable compared to the same properties of transmission models. Therefore, regardless 
of the DIC value, the selection of the model is dependent on the objectives of the study 
and the availability of data.

CONCLUSION AND FUTURE WORK 

In this study, the expected relative risk estimates from existing models have demonstrated 
high-risk areas contracting leptospirosis across Malaysia from 2011 to 2018. Each model 
gives different estimates of relative risk based on the components used for estimates of 
random variables in spatial units, such as an effort to overcome the drawbacks of the 
SMR. Next, in line with the objective of this study, expected relative risk is derived from 
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the transmission stochastic SIR model as an estimate of risk. The results disclosed areas 
at high risk of contracting leptospirosis disease for states in Malaysia which is significant 
for surveillance systems and control measures.

Compared with existing methods of relative risk estimates, the stochastic SIR model 
is more relevant and in line with infections due to leptospirosis transmission. Infectious 
disease is naturally transmitted to susceptible individuals from infectious individuals 
which finally recovered from the disease. In epidemiology studies, having this transition 
enables researchers to determine the target population for control measures. For example, 
susceptible individuals which comprise different age-groups will have different rates of 
infection. The high infection age-group/s can be easily targeted to stop the transmission. In 
another case, for different groups of the sub-population, only certain groups are vaccinated 
to prevent disease outbreak. This indicates the importance of transmission systems in the 
study of infectious disease. Next, the expected relative risk estimates from newly infective 
persons are based on the stochastic process. It is important to consider the probability or 
uncertainty of disease infection so the risk estimates can be more flexible depending on 
the behaviour of the disease and infection. 

However, in this study, the stochastic SIR model only involves human transmission. 
Since leptospirosis disease originates from rodents, especially rats, it will be more specific 
and realistic if transmission from the rat population is considered in the model. An extension 
to this work consisting of a rat population in the transmission model should be the subject 
of future study. Furthermore, the application of risk would be more effective with the 
presentation of a risk map.
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